Bernoulli's Inequality can be proven for integer exponents using induction, and extended to rational exponents also using induction. We will assume that for $b\gt0$ and all $x\in\mathbb{R}$, $b^x\gt0$.
Lemma: If $\boldsymbol{b\gt1}$ and $\boldsymbol{x\gt0}$, then $\boldsymbol{b^x\ge1+x\frac{b-1}b\gt1}$
$$
\begin{align}
b^x
&=\left(1-\frac{b-1}b\right)^{-x}\tag{1a}\\
&\ge1+x\frac{b-1}b\tag{1b}\\[6pt]
&\gt1\tag{1c}
\end{align}
$$
Explanation:
$\text{(1a)}$: rewrite $b^x=(1/b)^{-x}$
$\text{(1b)}$: Bernoulli's Inequality for negative exponents $\left(-\frac{b-1}b\gt-1\right)$
$\text{(1c)}$: $x\gt0,b\gt1\implies x\frac{b-1}b\gt0$
Corollary: If $\boldsymbol{b\gt1}$, then $\boldsymbol{b^x}$ is Increasing
If $x\gt y$, then
$$
\begin{align}
b^x
&=b^{x-y}b^y\tag{2a}\\[9pt]
&\gt b^y\tag{2b}
\end{align}
$$
Explanation:
$\text{(2a)}$: property of exponents
$\text{(2b)}$: since $x-y\gt0$, $\text{(1c)}$ says that $b^{x-y}\gt1$
Upper Bound
For $b\gt1$ and $y\gt1$, if $x\gt b\frac{y-1}{b-1}$, then
$$
\begin{align}
b^x
&\ge1+\color{#C00}{x}\frac{b-1}b\tag{3a}\\
&\ge1+\color{#C00}{b\frac{y-1}{b-1}}\frac{b-1}b\tag{3b}\\[3pt]
&=y\tag{3c}
\end{align}
$$
Explanation:
$\text{(3a)}$: Lemma
$\text{(3b)}$: assumption
$\text{(3c)}$: simplify
For $b\gt1$ and $y\le1$, if $x\gt0$, then $b^x\gt b^0=1\ge y$.
Thus, if $b^x\lt y$, then $x\lt\max\!\left(b\frac{y-1}{b-1},0\right)$.
Therefore, $A=\{x\in\mathbb{R}:b^x\lt y\}$ has an upper bound of $\max\!\left(b\frac{y-1}{b-1},0\right)$.
Existence
For $b\gt1$ and $y\lt1$, if $x\lt\frac by\frac{y-1}{b-1}$, then
$$
\begin{align}
b^{-x}
&\ge1\color{#C00}{-x}\frac{b-1}b\tag{4a}\\[3pt]
&\gt1\color{#C00}{-\frac by\frac{y-1}{b-1}}\frac{b-1}b\tag{4b}\\
&=\frac1y\tag{4c}
\end{align}
$$
Explanation:
$\text{(4a)}$: Lemma $(-x\gt0)$
$\text{(4b)}$: assumption
$\text{(4c)}$: simplify
Thus, if $y\lt1$ and $x\lt\frac by\frac{y-1}{b-1}$, then $b^x\lt y$.
For $b\gt1$ and $y\ge1$, if $x\lt0$, then $b^x\lt b^0=1\le y$.
if $x\lt\min\!\left(\frac by\frac{y-1}{b-1},0\right)$, then $b^x\lt y$.
Therefore, $\left(-\infty,\min\!\left(\frac by\frac{y-1}{b-1},0\right)\right)\subset A=\{x\in\mathbb{R}:b^x\lt y\}$.