Find $\lim_{n\to \infty}(\frac{n!}{(n+1)^n})^{1/n}$
$$(n!)^2=[1\cdot n][2\cdot (n-1)][3\cdot (n-2)] \cdots [(n-1)\cdot 2][n\cdot 1].$$ Each of the $n$ products $(k+1)\cdot (n-k)$, for $0\le k<n$, is $\ge n$.
Thus $$(n!)^2 \ge n^{n} \quad\implies \left(\frac{n!}{(n+1)^n}\right)^{1/n}\ge \frac{\sqrt{n}}{n+1}.$$
Please help to solve it