3

Such that $\phi(n)$ is a phi Euler function, $\lambda(n)$ is a Carmichael lambda function. With $\frac{\gcd(n-1, \phi(n))^3}{\lambda(n)^3} \geq n-1$, i can find some numbers n such as: $1729, 19683001, 631071001, 4579461601, 8494657921$ and so on, but with $\frac{\gcd(n-1, \phi(n))^2}{\lambda(n)^2} \geq n-1$, how can i find a number n??

Visage Livre
  • 161
  • 6

0 Answers0