Here we show that for any random variable $X$ whose distribution has density with respect to Lebesgue measure $\lambda$ (i.e. there is $\phi\in L^+_1(\mathbb{R},\lambda)$ such that $P[X\in A]=\int_A\phi(x)\,dx$ for any $A\in\mathscr{B}(\mathbb{R})$), we have that
$$\begin{align}\{\sigma X+\mu\}\Longrightarrow U(0,1),\quad \text{as} \quad\sigma\rightarrow\infty,\tag{0}\label{zero}\end{align}$$
where $\mu\in\mathbb{R}$ is fixed, $\{x\}=x-\lfloor x\rfloor$, $U(0,1)$ is the uniform distribution on the interval $(0,1)$, and $\Longrightarrow$ stands for weak convergence of probability measures. In particular, if $N(\mu;\sigma)$ denotes the normal distribution with mean $\mu$ and variance $\sigma>0$, then $N(\mu;\sigma)\Longrightarrow U(0,1)$ as $\sigma\rightarrow\infty$, for if $X\sim N(0,1)$, then $\sigma X+\mu\sim N(\mu;\sigma)$. Incidentally, \eqref{zero} also answers the question in here by considering $1-\{x\}$ in place of $\{x\}$ an noticing that $1-U(0,1)\stackrel{law}{=}U(0,1)$.
The approach we follow is based on a simple extension of Fejér's formula which we state here and prove after showing \eqref{zero}. We conclude this answer with an observation of the apparent uniformity that the transformation $\sigma X$ has as $\sigma\rightarrow\infty$.
Theorem: Let $g$ be a bounded measurable $T$-periodic function, $\sigma_n\xrightarrow{n\rightarrow\infty}\infty$, and $\alpha_n$ any sequence in $\mathbb{R}$. For any $\phi\in L_1(\mathbb{R},\lambda)$, where $\lambda$ is Lebesgue's measure,
$$\begin{align}
\lim_{n\rightarrow\infty}\int_{\mathbb{R}} \phi(x)g(\sigma_nx+\alpha_n)\,dx=\Big(\frac{1}{T}\int^T_0 g(x)\,dx\Big)\Big(\int_{\mathbb{R}} \phi(x)\,dx\Big)\tag{1}\label{one}
\end{align}$$
Let $\mu\in\mathbb{R}$ and let $\sigma_n>0$ be a sequence such that $\sigma_n\xrightarrow{n\rightarrow\infty}\infty$.
Let $\phi$ be the density function of the distribution of $X$. The function $\{x\}:=x-[x]$ is bounded measurable and $1$-periodic. For any $f\in\mathcal{C}_b(\mathbb{R})$, $x\mapsto f(\{x\})$ is measurable, bounded, and $1$-periodic. By Fejér's formula \eqref{one}
$$\begin{align}
\mathbb{E}\Big[f\big(\{\sigma_n X+\mu\}\big)\Big]&=\int_{\mathbb{R}} f(\{\sigma_n x+\mu\})\phi(x)\,dx\xrightarrow{n\rightarrow\infty}\Big(\int^1_0f(\{x\})\,dx\Big)\Big(\int\phi(x)\,dx\Big)\\
&=\int^1_0f(x)\,dx=\mathbb{E}[f(U)]\tag{2}\label{two}
\end{align}$$
This proves the weak convergence along any sequence $\sigma_n\xrightarrow{n\rightarrow\infty}\infty$, and hence that $\{\sigma X+\mu\}\Longrightarrow U(0,1)$ as $\sigma\rightarrow\infty$.
Proof of Fejér's formula:
We first consider functions of the form $\phi(x)=\mathbb{1}_{(a,b]}(x)$. Since
$$\sigma_nb+\alpha_n=\sigma_na+\alpha_n+\frac{\sigma_n(b-a)}{T}T=
\sigma_na+\alpha_n+\left\lfloor\frac{\sigma_n(b-a)}{T} \right\rfloor T+ r_nT$$
where $r_n=\big\{\frac{\sigma_n(b-a)}{T}\big\}$, we have that
$$\begin{align}
\int_{\mathbb{R}} g(\sigma_nx+\alpha_n)\phi(x)\,dx&=\frac{1}{\sigma_n}\int^{\sigma_nb+\alpha_n}_{\sigma_na+\alpha_n}g(x)\,dx\\
&=\left\lfloor\frac{\sigma_n(b-a)}{T}\right\rfloor\frac{1}{\sigma_n}\int^T_0 g(x)\,dx +\frac{1}{\sigma_n}\int_{I_n}g(x)\,dx\tag{3}\label{three}
\end{align}$$
where $I_n$ is an interval of length $r_nT$. The first term in \eqref{three} converges to $\frac{b-a}{T}\int^T_0g=\Big(\frac{1}{T}\int^T_0g\Big)\int \phi$;
whereas the second term in \eqref{three} converges to $0$, for $\frac{1}{\sigma_n}\Big|\int_{I_n}g\Big|\leq \frac{T}{\sigma_n}\|g\|_u\xrightarrow{n\rightarrow\infty}0$. This proves \eqref{one} for finite intervals, and by linearity, \eqref{one} extends to all step functions. As step functions are dense in $L_1(\mathbb{R},\lambda)$, we conclude that \eqref{one} holds for all $\phi\in L_1$.
Observation: The transformation $\sigma X$, where $X$ is a random variable with density (no integrability assumed), flattens out locally the density of $\sigma X$ as $\sigma\rightarrow\infty$ giving the appearance of uniformity. To be more precise, suppose the density $\phi$ of $X$ is continuous at $0$, and $\phi(0)>0$. Let $A$ be a Borel set with $0<\lambda(A)<\infty$ and $P(X\in A)>0$, and consider the conditional distribution
$$ P^A_\sigma(dx):=P[\sigma X\in dx|\sigma X\in A]$$
Then, by dominated convergence, we have that for any $f\in\mathcal{C}_b(\mathbb{R})$
$$\begin{align}
E[f(\sigma X)|\sigma X\in A]&=\frac{\int \mathbb{1}_{A}(\sigma x) f(\sigma x)\phi(x)\,dx}{\int\mathbb{1}_A(\sigma x)\phi(x)\,dx}\\
&=\frac{\int \mathbb{1}_{A}(x) f(x)\phi\big(\tfrac{x}{\sigma}\big)\,dx}{\int\mathbb{1}_A(x)\phi\big(\tfrac{x}{\sigma}\big)\,dx}\xrightarrow{\sigma\rightarrow\infty}\frac{1}{\lambda(A)}\int_A\,f(x)\,dx
\end{align}$$
Therefore, $P^A_\sigma\stackrel{\sigma\rightarrow\infty}{\Longrightarrow}\frac{1}{\lambda(A)}\mathbb{1}_A(x)\,dx$, that is, $P^A_\sigma$ converges weakly to the uniform distribution over the set $A$. This in particular, holds for $X\sim N(\mu;1)$, $\mu\in\mathbb{R}$, in which case $\sigma X\sim N(\mu,\sigma)$.