If we start looking at the problem of finding $n$ such that $f(n) \leq \epsilon$, it write
$$\frac {c^n}{n!}=\epsilon \implies n!=\frac {c^n}\epsilon$$ This has been solved in a question of mine where @robjohn proposed a superb approximation. Using your notations
$$\color{blue}{n\sim c \,e^{1+W(t)}-\frac 12}\qquad \text{where} \qquad \color{blue}{t=-\frac{\log \left(2 \pi c \epsilon ^2\right)}{2 e c}}\tag 1$$ $W(t)$ being Lambert function.
For a first test, using $c=5$ and $\epsilon=10^{-15}$, this would give $n\sim 34.3499$ ( the exact solution being $34.3505$) then $\lceil n \rceil=35$. Checking
$$\frac {5^{34}}{34!}=1.97\times 10^{-15} >10^{-15}\qquad \text{while} \qquad\frac {5^{35}}{35!}=2.82\times 10^{-16} <10^{-15}$$
If you cannot access Lambert function, since $t$ is large, you can approximate it using the series expansion
$$W(t)\sim L_1-L_2+\frac{L_2}{L_1}+\frac{L_2(L_2-2)}{2L_1^2}+\frac{L_2(2L_2^2-9L_2+6)}{6L_1^3}+\cdots$$ where $L_1=\log(t)$ and $L_2=\log(L_1)$.
For illustration, still for $c=5$ and $\epsilon=10^{-k}$, let us compute $\delta(n) = |f(n)-f(n-1)|$.
$$\left(
\begin{array}{cc}
k & \log_{10}[\delta(n)] \\
5 & -4.49533 \\
6 & -5.45527 \\
7 & -6.42008 \\
8 & -7.38869 \\
9 & -8.36033 \\
10 & -9.33446 \\
11 & -10.3107 \\
12 & -11.2886 \\
13 & -12.2681 \\
14 & -13.2489 \\
15 & -14.2308
\end{array}
\right)$$
It is the same order of magnitude. So, keep $(1)$ for the estimation.
If you really want to polish the root, consider that you look for the zero of function
$$g(n)=\log \left(\frac{c^n }{n!}\left(\frac{n}{c}-1\right)\right)-\log(\epsilon)$$ and perform some iterations of Newton method
$$n_{p+1}=n_p-\frac{g(n_p)}{g'(n_p)}$$ using for $n_0$ the value given by $(1)$ and
$$g'(n)=\frac{1}{n-c}+\log (c)-H_n+\gamma$$ For the first worked example, the iterates would be
$$\left(
\begin{array}{cc}
0 & 34.3499 \\
1 & 35.2783 \\
2 & 35.2718
\end{array}
\right)$$