I have just done these, but I don't know what to do next......
\begin{align} \int \frac{\sin x}{x+x\cos^2 x}\,\mathrm{d}x & = \int \frac{1}{x}\cdot\frac{\sin x}{1+\cos^2 x}\,\mathrm{d}x\\ &=\int \frac{1}{x}\,\mathrm{d}(\arctan(-\cos x))\\\ &=\frac{1}{x} \arctan(-\cos x)-\int -\frac{1}{x^2} \arctan(-\cos x)\,\mathrm{d}x \\ &=\frac{1}{x} \arctan(-\cos x)-\int \frac{\arctan(\cos x)}{x^2}\,\mathrm{d}x \end{align}