Here is a question from Indian Statistical Institute (ISI) Entrance Exam CSA-2020, Question 11:
$\binom n0, \binom n1,..., \binom nn$ denote the binomial coefficients in the expansion of $(1 + x)^n \ \text{where} \ p > 0$ is a real number and $q = 1 − p$ then $$ \sum\limits_{r=0}^n r^2 \binom nr p^{n-r}q^r $$ is equal to
$ (A)\ np^2q^2 \ (B)\ n^2p^2q^2 \ (C)\ npq + n^2p^2 \ (D)\ npq + n^2q^2 $
My Thoughts: (1)
If I put the formula for $\binom nr$ in the given sum. I am getting
$$ \sum\limits_{r=0}^n r^2 \frac{n!}{r!(n-r)!} p^{n-r}q^r $$
How do I proceed after this?
Edit:
Taking help from here and the comments below I wrote the following, although I am stuck in the last step, please help me out.
$$ (1+x)^n=\sum\limits_{r=0}^n \binom nr x^r $$ Taking derivative on both sides we have: $$ n(1+x)^{n-1}=\sum\limits_{r=1}^n r\binom nr x^{r-1} $$ Multiplying both sides by $x$ we get: $$ nx(1+x)^{n-1}=\sum\limits_{r=1}^n r \binom nr x^r $$ Taking derivative another time: $$ n(1+x)^{n-1}+nx(n-1)(1+x)^{n-2}=\sum\limits_{r=1}^n r^2 \binom nr x^{r-1} $$ Multiplying both sides by $x$ we get: $$ nx(1+x)^{n-1}+nx^2(n-1)(1+x)^{n-2}=\sum\limits_{r=1}^n r^2 \binom nr x^r $$
Given that $p>0$ and $q=1-p$ . So let $x=\frac qp$ then we have: $$ n\frac qp\left(1+\frac qp\right)^{n-1}+ n\left(\frac qp\right)^2(n-1)\left(1+\frac qp\right)^{n-2} = \sum\limits_{r=1}^n r^2 \binom nr \left(\frac qp \right)^r $$
$$ \implies n\frac qp\left(\frac{p+q}{p}\right)^{n-1}+ n\left(\frac qp\right)^2(n-1)\left(\frac{p+q}{p}\right)^{n-2} = \sum\limits_{r=1}^n r^2 \binom nr \left(\frac qp \right)^r $$
$$ \implies n\frac qp \left(\frac{1}{p}\right)^{n-1}+ n\left(\frac qp\right)^2(n-1)\left(\frac{1}{p}\right)^{n-2} = \sum\limits_{r=1}^n r^2 \binom nr \left(\frac qp \right)^r \ \ \ \ \ [\text{Since}\ p+q=1] $$
$$ \implies n\frac{q}{p^n}+ n(n-1)\frac{q^2}{p^n} = \sum\limits_{r=1}^n r^2 \binom nr \left(\frac qp \right)^r $$
$$ \implies nq+ n(n-1)q^2 = p^n\sum\limits_{r=1}^n r^2 \binom nr \left(\frac qp \right)^r $$
$$ \implies nq+ n(n-1)q^2 = \sum\limits_{r=1}^n r^2 \binom nr p^{n-r}q^r $$
$$ \implies n(q-q^2)+ n^2q^2 = \sum\limits_{r=1}^n r^2 \binom nr p^{n-r}q^r $$
$$ \implies n\{(1-p)-(1-p)^2\}+ n^2q^2 = \sum\limits_{r=1}^n r^2 \binom nr p^{n-r}q^r $$
$$ \implies n\{(1-p)-(1+p^2-2p)\}+ n^2q^2 = \sum\limits_{r=1}^n r^2 \binom nr p^{n-r}q^r $$
$$ \implies np(1-p)+ n^2q^2 = \sum\limits_{r=1}^n r^2 \binom nr p^{n-r}q^r $$
$$ \implies npq+ n^2q^2 = \sum\limits_{r=1}^n r^2 \binom nr p^{n-r}q^r $$
Hence option (D) is correct.
This question is almost similar to this question but is slightly different. So I have added this question.