I'm trying to find out if the series $$\sum_{n=2}^\infty \frac{1}{nn^{1/n}}$$
converges or not. First with the ratio test and then with the integral test.
Ratio test:
$$r=\lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=\lim\frac{nn^{1/n}}{(1+n)(1+n)^{1/(n+1)}}$$ $$\lim_{n\rightarrow \infty}\frac{n}{n+1}=1$$ $$\lim_{n\rightarrow \infty}n^{1/n}=\lim e^{\ln(n)/n}=1$$ $$\lim_{n\rightarrow \infty}(n+1)^{1/(n+1)}=\lim e^{\ln(n+1)/(n+1)}=e^0=1$$ That means $r=1$ so ratio text is inconclusive.
Integral test $$\int^L \frac{1}{xx^{1/x}}dx=\int^L\frac{1}{xe^{\ln(x)/x}}dx$$ Let $\ln(x)=y$ then $$\int\frac{1}{\exp\left\{ye^{-y}\right\}}dy $$ I don't know, what do now? How to show if this integral will or will not converge as $L\rightarrow \infty$?