I'm not a mathematician nor do I otherwise use it seriously, but every once in a while I just play around with a formula that I generate (usually to look complex or designed to get really big [like a factorial function]), but this time, I think I found something interesting.
I generated the following formula: $$f(x)=\sum_{n=1}^{x}(\prod_{m=1}^{n}(\frac{1}{m}))$$ I plugged into Desmos (originally, I was testing if they had fixed their summation and product functions on their graphing calculator) and I realized that the limit was some constant.
I decided to explore this myself and, to speed up the process, I plugged in $10$ for $x$ and I got something close to the constant: $$\sum_{n=1}^{10}(\prod_{m=1}^{n}(\frac{1}{m}))\approx1.7182\ldots$$ If we plug in 100, instead, we get a similar value: $$\sum_{n=1}^{100}(\prod_{m=1}^{n}(\frac{1}{m}))\approx1.7182\ldots$$ Seeing this, I was curious about mathematical constants. I know that $\varphi=\frac{1+\sqrt{5}}{2}\approx1.6\ldots$ and $\sqrt{3}\approx1.732\ldots$, so this constant must be represented as the following: $$\varphi\leq c \leq\sqrt{3}$$ Is there a constant here, or did I just discover something (probably useless) here? If there is a constant here, what is it used for? If not, then are there potential uses?