First I prove that $10^nx\mod9=x\mod9$.
Base case: $10^0x \mod 9=x \mod 9$
Assume $10^kx \mod 9=x \mod 9$.
$10^{k+1}x \mod 9=10*10^kx \mod 9=(10 \mod 9 * (10^kx) \mod 9)\mod 9$
$=((10^kx) \mod 9)\mod 9=((10^kx) \mod 9)=x\mod 9$ by assumption.
Let $n \in Z$. Then $n=10^nd_n+....+10d_1+d_0$ with $di \in Z$ and $0<d_i<10$.
$(10^nd_n+....+10d_1+d_0) \mod 9=$
$((10^nd_n) \mod 9+....+(10d_1) \mod 9+d_0 \mod 9) \mod 9=$
$((10^n \mod 9 *d_n \mod 9) \mod 9+....+(10 \mod 9* d_1 \mod 9 ) \mod 9+d_0 \mod 9) \mod 9=$
$(d_n \mod 9) \mod 9+....+(d_1 \mod 9 ) \mod 9+d_0 \mod 9) \mod 9=$
$(d_n \mod 9+....+d_1 \mod 9+d_0 \mod 9) \mod 9=$
$(d_n+...+d_1+d0) \mod 9$
Therefore, $(d_n+...+d_1+d0) \mod 9=0$ IFF $n \mod 9=0$.
Is this proof correct? Any simpler way to do it?