You can generalize to any integer:
$\displaystyle\frac{\sin(nx)}{\sin(x)}=\frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}=e^{-i(n-1)x}\left(\frac{1-e^{i2nx}}{1-e^{i2x}}\right)=e^{-i(n-1)x}\sum\limits_{k=0}^{n-1}e^{i2kx}=\sum\limits_{k=0}^{n-1}e^{i(2k+1-n)x}$
From there you have two possibilities, notice the indexes $(2k+1-n)$ take values
- $\begin{cases}-(n-1),-(n-3),\cdots,-1,1,\cdots,(n-3),(n-1)&n\text{ even}\\-(n-1),-(n-3),\cdots,-2,0,2,\cdots,(n-3),(n-1)&n\text{ odd}\end{cases}$
Therefore you can regroup terms two by two $\, e^{imx}+e^{-imx}=2\cos(mx)$ and end up with a sum of $\cos(mx)$ where $m$ varies with a step $2$.
These cosinus are easy to integrate and will give you a rational value for the integral.
Notice that for $n$ odd, you have also a constant term that will make a $\dfrac{\pi}2$ value appear.
- The second possibility is to integrate the exponential directly
Then $\displaystyle I_n=\sum\limits_{k=0}^{n-1}\dfrac{e^{\frac{i\pi}2(2k+1-n)}-1}{(2k+1-n)i}$
Notice also that $\displaystyle \int_0^{5\pi/2}\frac{\sin(8x)}{\sin(x)}dx=\int_0^{\pi/2}\frac{\sin(8x)}{\sin(x)}dx\ $ since the integral on $[0,2\pi]$ is zero.
So overall our integral is just $\dfrac 15I_8$