The expression in the OP for the Riemann Zeta function should read
$$\zeta(s)=\frac1{1-2^{\color{red}1-s}}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^s}\tag1$$
First, we expand the term $\left(1-2^{1-s}\right)^{-1}$ in $(1)$ at $s=1$ to find that
$$\begin{align}
\frac1{1-2^{\color{red}1-s}}&=\frac1{1-e^{(1-s)\log(2)}}\\\\
&=\frac1{\log(2)(s-1)-\frac12 \log^2(2)(s-1)^2+O((s-1)^3)}\\\\
&=\frac1{\log(2)(s-1)}\left(1+\frac{\log(2)(s-1)}2+O(s-1)^2\right)\tag2
\end{align}$$
Next, we expand the series $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^s}$ in $(1)$ at $s=1$ to find that
$$\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}=\log(2)-\sum_{n=1}^\infty \frac{(-1)^{n-1}\log(n)}{n}(s-1)+O(s-1)^2\tag3$$
Using $(2)$ and $(3)$ in $(1)$ reveals
$$\zeta(s)-\frac1{s-1}=\frac12 \log(2)-\frac1{\log(2)}\sum_{n=1}^
\infty \frac{(-1)^{n-1}\log(n)}{n}+O(s-1)\tag4$$
It remains to show that the series in $(4)$ in equal to $\frac12\log^2(2)-\gamma \log(2)$. To do so, we apply the Euler-Maclaurin Summation Formula to the sum $\sum_{n=N+1}^{2N} \frac{\log(n)}{n}$. Proceeding, we see that
$$\begin{align}
\sum_{n=1}^{2N} \frac{(-1)^{n-1}\log(n)}{n}&=\sum_{n=1}^{2N}\frac{\log(n)}{n}-\sum_{n=1}^N \frac{\log(2n)}{n}\\\\
&=\color{red}{\sum_{n=N+1}^{2N}\frac{\log(n)}{n}}-\color{blue}{\log(2)\underbrace{\sum_{n=1}^N \frac1n}_{=H_N}}\\\\
&=\color{red}{\frac12 \log^2(2N)-\frac12\log^2(N)+O\left(\frac{\log(N)}{N}\right)}\\\\
&-\color{blue}{\log(2)\left(\log(N)+\gamma+O\left(\frac1N\right)\right)}\\\\
&=\frac12\log^2(2)+\log(2)\log(N)+O\left(\frac{\log(N)}{N}\right)\\\\
&-\log(2)\left(\log(N)+\gamma+O\left(\frac1N\right)\right)\\\\
&=\frac12\log^2(2)-\log(2) \gamma+o(1)
\end{align}$$
Letting $N\to \infty$, we obtain the result
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\log(n)}{n}=\frac12\log^2(2)-\log(2)\gamma\tag5$$
Using $(5)$ in $(4)$ and letting $s\to 1$ yields
$$\bbox[5px,border:2px solid #C0A000]{\lim_{s\to 1}\left(\zeta(s)-\frac1{s-1}\right)=\gamma}$$
as was to be shown!