Since $\frac{\sin^2n}{\sqrt{n}} \leqslant \frac{|\sin n|}{\sqrt{n}}$ for any $n \in \mathbb{N}^{\times}$, assuming that $\displaystyle \sum_{n=1}^{\infty} \frac{|\sin n|}{\sqrt{n}} < \infty$ would entail that $\displaystyle \sum_{n=1}^{\infty} \frac{\sin^2n}{\sqrt{n}} < \infty$.
However, as $\sin^2n=\frac{1-\cos(2n)}{2}$ one notices that:
$$\displaystyle \sum_{n=1}^{\infty} \frac{\sin^2n}{\sqrt{n}}=\displaystyle\sum_{n=1}^{\infty}\frac{1}{2\sqrt{n}}-\displaystyle\sum_{n=1}^{\infty}\frac{\cos(2n)}{2\sqrt{n}}.$$
Can you see why this would end up entailing a contradiction?