Despite it might be silly question, I'm eager to know it
Let the $ SF(x^n-a/\mathbb{Q})$ and $SF(x^n+a/\mathbb{Q}) $ be the splitting field of the $x^n-a$ and $x^n+a$ over the $\mathbb{Q}$ respectively. The $n $ is a natural number.
say $\omega = e^{ \frac{2\pi i }{n}}$, $\alpha = (-a)^{ \frac{1}{n}} $ And say $\beta =a^{ \frac{1}{n}}$
Then, $ SF(x^n-a/\mathbb{Q})= \mathbb{Q}( \beta , \omega ) $
on the other hand, $ SF(x^n+a/\mathbb{Q})= \mathbb{Q}( \alpha , \omega ) $
I've considered the $n$ is a odd case. Since the $(-1)^{ \frac{1}{n}} = -1 $ in either $\mathbb{Q}$ or $\mathbb{R}$ so $\alpha = -\beta $ in splitting fields over $\mathbb{Q}$.
Therefore my conclusion is If the $n$ is odd number then, $ SF(x^n-a/\mathbb{Q}) = SF(x^n+a/\mathbb{Q}) $.
Is my guess and conclusion right? Are there any other conditions for claiming $ SF(x^n-a/\mathbb{Q}) = SF(x^n+a/\mathbb{Q}) $ generally ?
Thanks for reading my post