Let $k \in \mathbb{N}$. Denote by $$Z_s := X_{s+\tau_k}-X_{\tau_k} \qquad (s \in \mathbb{N}_0)$$ the restarted random walk. Then $\tau_k$ is independent of $(Z_s)_{s \geq 0}$. This is intuitively clear, for a proof see below. Now note that
$$\begin{align*} \tau_{k+1} &= \tau_k + \min \{t-\tau_k; X_{(t-\tau_k)+\tau_k} - X_{\tau_k} = 1\} \\ &= \tau_k + \underbrace{\min\{s \geq 0; Z_s=1\}}_{=:\sigma_1}. \end{align*}$$
Since $\tau_k$ is independent of $(Z_s)_{s \geq 0}$, we see that $\tau_k$ and $\sigma_1$ are also independent. Moreover, the increments $Y_j$ are supposed to be identically distributed, so $\sigma_1 \sim \tau_1$. Thus,
$$\mathbb{P}(\tau_{k+1}<\infty) = \mathbb{P}(\tau_k < \infty, \sigma_1 < \infty) = \mathbb{P}(\tau_k<\infty) \cdot \underbrace{\mathbb{P}(\sigma_1<\infty)}_{\mathbb{P}(\tau_1<\infty)}.$$
By induction,
$$\mathbb{P}(\tau_{k+1}<\infty) = q^k \cdot q = q^{k+1}.$$
Proof that $\tau_k$ and $(Z_s)_{s \geq 0}$ are independent:
$$\begin{align*} \mathbb{E} \exp \left(\imath \, \xi \cdot \tau_k + \imath \sum_{j=0}^n \eta_j \cdot Z_{s_j} \right) &= \sum_{m \geq 1} e^{\imath \, \xi \cdot m} \cdot \mathbb{E} \bigg( \underbrace{1_{[\tau_k=m]}}_{\in \mathcal{F}_m} \cdot \underbrace{\exp \bigg(\imath \sum_{j=0}^n \eta_j \cdot \underbrace{(X_{s_j+m}-X_m)}_{\sim X_{s_j}} \bigg)}_{\text{independent of} \, \mathcal{F}_m} \bigg) \\ &= \mathbb{E}e^{\imath \, \xi \cdot \tau_k} \cdot \mathbb{E}\exp \left(\imath \, \sum_{j=0}^n \eta_j \cdot X_{s_j} \right) \end{align*}$$
where $\xi, \eta_j \in \mathbb{R}$, $s_j \in \mathbb{N}_0$ and $\mathcal{F}_m := \sigma(X_1,\ldots,X_m)$ denotes the canonical filtration. For $\xi=0$ this shows that the finite dimensional distributions of $X$ and $Z$ coincide. Hence,
$$\begin{align*} \mathbb{E} \exp \left(\imath \, \xi \cdot \tau_k + \imath \sum_{j=0}^n \eta_j \cdot Z_{s_j} \right)&= \mathbb{E}e^{\imath \, \xi \cdot \tau_k} \cdot \mathbb{E}\exp \left(\imath \, \sum_{j=0}^n \eta_j \cdot Z_{s_j} \right) \end{align*}$$
which implies that $\tau_k$ and $(Z_s)_{s \geq 0}$ are independent, see here.