Starting from a set of integers: $$\begin{cases} x+y+z+v+w = a+b+c+d+e\\ x^2+y^2+z^2+v^2+w^2 = a^2+b^2+c^2+d^2+e^2 \end{cases}$$ Given that $x, y, z, v, w$ are all positive integers, how can I find if there are another set of integers that satisfy both equations?
For example I know that when $x=271$, $y=106$, $z=438$, $v=385$, $w=42$, $$ \begin{cases} x+y+z+v+w = 1242\\ x^2+y^2+z^2+v^2+w^2 = 426510 \end{cases}$$ Is there a way to find if there are another set of integers that satisfy both equations?
Note: I'm looking for a method quicker than brute-force.