The estimate I wanna get is $$v_2(\sum_{i=1}^n\frac{2^i}{i})\geq\min_{t\geq n+1}\{t-v_2(t)\}\tag{*}$$ where $v_2$ is the highest power of 2 defined on $\mathbb{Q}$.
Set $$S_n:=\sum_{i=1}^n\frac{2^i}{i}.$$
One knows that $$\log(-1)=\log(1+(-2))\equiv -\sum_{i=1}^n\frac{2^i}{i}+\text{multiples of }2^{n+1}\equiv -\sum_{i=1}^n\frac{2^i}{i}\mod 2^{n+1}$$ so we have$$ 0=2\log(-1)\equiv-2S_n\mod 2^{n+1} $$ which means $$ v_2(2S_n)\geq n+1. $$
So we might get $v_2(S_n)\geq n$.
But I still get trouble showing the inequility (*).