1

Be $a>0$ a real number. Define by the induction method the sequence $x_{n+1}= \frac{[x_n + \frac{a}{x_n}]}{2}$.
Show that the sequence $(x_n)$ thus obtained converges to $\sqrt{a}.$ \begin{align*} \forall x \in \mathbb{R} &\Rightarrow \sqrt{a}<x\\ &\Rightarrow \bigg(\frac{a}{x}\bigg)<\sqrt{a}<x \hspace{0.2cm}(\mbox{multiplying both sides of inequality by}\hspace{0.05cm} \sqrt{a}) \end{align*} \begin{align*} i)& \hspace{0.8cm} x_{n+1}=\frac{1}{2}\cdot \bigg(x_n+\frac{a}{x_n}\bigg)\\ ii)& \hspace{0.8cm} y=\frac{1}{2}\cdot \bigg(x_n+\frac{a}{x_n}\bigg) \end{align*} \begin{eqnarray} \sqrt{a}<x \Rightarrow a<x\cdot \sqrt{a} \Rightarrow \frac{a}{x}<\sqrt{a}<x. \hspace{2cm}(1) \\ y=\bigg(\frac{x+\frac{a}{x}}{2}\bigg) \stackrel{({1})}{<}\frac{x+x}{2}=x, \hspace{0.5cm}\mbox{i.e}\hspace{0.5cm}(y<x)\hspace{2cm}(2)\\ y=\bigg(\frac{x+\frac{a}{x}}{2}\bigg)\stackrel{({1})}{>}\frac{\sqrt{a}+\sqrt{a}}{2}=\sqrt{a}\hspace{2cm}(3) \end{eqnarray} By $(2)$ and $ (3) $ we have \begin{equation} \sqrt{a}<y<x \hspace{8.5cm}(4) \end{equation} But, I need to prove that \begin{equation} x_1>x_2>...x_n>x_{n+1}>... \hspace{5cm}(5) \end{equation} Because, for $ (5) $ I get to show that:
$ x_n $ is a sequence monotone limited and convergent.
But, how do I prove this?

0 Answers0