Let $f$ be entire, $|f(z)|\leq 3|z|^4+1$ prove $f$ is a polynomial with deggre $\leq 4$
Solution:
$f^{(4)}(z_0)=\frac{4!}{2\pi i} \int_c\frac{f(z)}{(z-z_0)^5}dz$, $\Rightarrow$ $|f^{(4)}(z_0)|\leq \frac{4!}{2\pi i} \int_c |\frac{f(z)}{(z-z_0)^5}|dz \leq \frac{4!}{2\pi i} \int_c \frac{|f(z)|}{|(z-z_0)^5|}dz \leq$ $$\leq \frac{4!}{2\pi i} \int_{0}^{2\pi}\frac{|f(z_0+re^{it})ire^{it}|}{|(re^{it})^5|}dt \leq \frac{4!}{2\pi i} \int_{0}^{2\pi}\frac{(3(|z_0|+r)^4+1)r}{r^5}dt \leq \frac{4!}{2\pi i} 2\pi\frac{(3(|z_0|+r)^4+1)}{r^4}$$
that means $f^{(4)}(z)$ is bounded so from Liouville's theorem its constant and therefore $f$ is a polynomial with deggre $\leq 4$
Is my solution correct ?