Problem
Let $(q = 0,\; \dot q=0)$ be an equilibrium point for a dynamical system, that is, a solution of Lagrange's equations $d/dt(\partial L / \partial \dot q^k) = \partial L / \partial q^k$ for which $q$ and $\dot q$ are identically 0. Here $L = T- V$ where $V = V(q)$ and where $2T = g_{ij}(q)\dot q^i \dot q^j$ is assumed positive definite. Assume that $q = 0$ is a nondegenerate minimum for $V$; thus $\partial V / \partial q^k = 0$ and the Hessian matrix $Q_{jk} = (\partial^2 V / \partial q^j \partial q^k)(0)$ is positive definite. For an approximation of small motions near the equilibrium point one assumes $q$ and $\dot q$ are small and one discards all cubic and higher terms in these quantities.
Using Taylor expansions, show that Lagrange's equations in our
quadratic approximation become $$g_{kl}(0)\ddot q^l = -Q_{kl}q^l$$
(From The Geometry of Physics, Theodore Frankel, Problem 2.4(4), part (i).)
Solution so far
\begin{equation*} L(q, \dot q) = \tfrac{1}{2} g_{ij}(q) \dot q^i \dot q^j - V(q) \end{equation*} whence \begin{align*} \frac{d}{dt}\left(\frac{\partial L}{\partial \dot q^k}(q)\right) & = \frac{d}{dt}\left(\tfrac{1}{2} g_{ij}(q) \frac{\partial}{\partial \dot q^k} (\dot q^i \dot q^j)\right) \\ & = \frac{d}{dt}\big(g_{kl}(q) \dot q^l\big) \\ & = \frac{\partial g_{kl}}{\partial q^i}(q) \dot q^i \dot q^l + g_{kl}(q) \ddot q^l \\ \end{align*} and \begin{equation*} \frac{\partial L}{\partial q^k}(q) = \frac{1}{2} \frac{\partial g_{ij}}{\partial q^k}(q) \dot q^i \dot q^j - \frac{\partial V}{\partial q^k}(q) \end{equation*} so we have \begin{equation}\label{L} \frac{\partial g_{kl}}{\partial q^i}(q) \dot q^i \dot q^l + g_{kl}(q) \ddot q^l = \frac{1}{2} \frac{\partial g_{ij}}{\partial q^k}(q) \dot q^i \dot q^j - \frac{\partial V}{\partial q^k}(q) \\ \end{equation} Taylor expand about $(q = 0,\; \dot q = 0)$, ignoring cubic terms in $q$ and $\dot q$. \begin{align*} \frac{\partial g_{kl}}{\partial q^i}(q) \dot q^i \dot q^j &= \frac{\partial g_{kl}}{\partial q^i}(0) \dot q^i \dot q^l + \ldots \\ g_{kl}(q) \ddot q^l &= g_{kl}(0) \ddot q^l + \frac{\partial g_{kl}}{\partial q^i}(0) q^i \ddot q^l + \frac{\partial^2 g_{kl}}{\partial q^i \partial q^j}(0) q^i q^j \ddot q^l + \ldots \\ \frac{\partial g_{ij}}{\partial q^k}(q) \dot q^i \dot q^j &= \frac{\partial g_{ij}}{\partial q^k}(0) \dot q^i \dot q^j + \ldots \\ \frac{\partial V}{\partial q^k}(q) &= \frac{\partial V}{\partial q^k}(0) + \frac{\partial^2 V}{\partial q^l \partial q^k}(0)q^l + \frac{\partial^3 V}{\partial q^m \partial q^l \partial q^k}(0) q^l q^m + \ldots \\ &= 0 + Q_{kl}q^l + \frac{\partial^3 V}{\partial q^m \partial q^l \partial q^k}(0) q^l q^m + \ldots \\ \end{align*} Deleting the ignored terms and substituting, \begin{equation*} % g_{kl}(q) \ddot q^l \frac{\partial g_{kl}}{\partial q^i}(q) \dot q^i \dot q^l + g_{kl}(0) \ddot q^l + \frac{\partial g_{kl}}{\partial q^i}(0) q^i \ddot q^l + \frac{\partial^2 g_{kl}}{\partial q^i \partial q^j}(0) q^i q^j \ddot q^l % = \frac{1}{2} \frac{\partial g_{ij}}{\partial q^k}(q) \dot q^i \dot q^j = \frac{1}{2} \frac{\partial g_{ij}}{\partial q^k}(0) \dot q^i \dot q^j % - \frac{\partial V}{\partial q^k}(q) \\ - Q_{kl}q^l - \frac{\partial^3 V}{\partial q^m \partial q^l \partial q^k}(0) q^l q^m \end{equation*}
Questions
All the terms except $q_{kl}(0)\ddot q^l$ and $-Q_{kl}q^l$ are unwanted. Should I have avoided introducing them in the first place? How? Or are the unwanted terms zero, individually or taken together? How come?
It was suggested on IRC that the term in $q^i q^j \ddot q^l$ counts as a cubic term that can be discarded, but that doesn't seem above board (is it?) since it prejudges that $\ddot q$ isn't much bigger than $q$ and $\dot q$, and we don't know that yet.
Another suggestion was that a change of coordinates such that all the first derivatives $(\partial g_{ij}/\partial q^k)(0)$ are zero should help. But I don't think we can do that and still get the desired answer in terms of the original $g_{ij}(0)$.