Problem: Suppose the power series $ \sum^\infty_{n=0}{ a_n x^n } $ converges at radius of convergence $ R_a $ and the power series $ \sum^\infty_{n=0}{ b_n x^n } $ converges at radius of convergence $ R_b $.
What can be said about the radius of convergence of the power series $ \sum^\infty_{n=0}{ (a_n+b_n) x^n } ~~ $ ?
Hint: Handle the case $ R_a = R_b $ and the case $ R_a \neq R_b $ separately.
Attempt- I didn't really know what to do but I still tried:
If $ R_a \neq R_b $ the sum $ \sum^\infty_{n=0}{ (a_n+b_n) x^n } $ converges iff $ \sum^\infty_{n=0}{ a_n x^n } $ and $ \sum^\infty_{n=0}{ b_n x^n } $ converge, hence $ R_{ab} = min\{ R_a , R_b \} $.
Let's now look at a case where we'd have $ R_a = R_b $; Define $ S^{a}_n = \sum^{n}_{k=1}(-1)^k x^k $ , $ S^{b}_n = \sum^{n}_{k=1}(-1)^{k+1} x^k $ note that $ R_a = R_b =1 $ . But $ S^{ab}_n = \sum^{n}_{k=1}( (-1)^k + (-1)^{k+1} ) x^k = 0 $ hence $ R_{ab} = +\infty $ .
Question: I feel very lost at this problem, can you please help me as to what explicitly I should do and what to show? how would you approach this problem?