$\newcommand{\vek}[1]{\boldsymbol{#1}}$ $\det( \vek{e}_i ~\vek{e}_j ~\vek{e}_k) \det \begin{pmatrix} \vek{e}_i^T \\ \vek{e}_l^T \\ \vek{e}_m^T \\ \end{pmatrix} = \det \begin{pmatrix} \vek{e}_i^T \vek{e}_i & \vek{e}_i^T \vek{e}_j & \vek{e}_i^T \vek{e}_k \\ \vek{e}_l^T \vek{e}_i & \vek{e}_l^T \vek{e}_j & \vek{e}_l^T \vek{e}_k \\ \vek{e}_m^T \vek{e}_i & \vek{e}_m^T \vek{e}_j & \vek{e}_m^T \vek{e}_k \\ \end{pmatrix}$
I have two questions on the above equation:
- How do you represent $\det(e_i,e_j,e_k)$ as a matrix?
- How did the equality follow?