"Let $\Sigma=\{a, b\} . $ For every word $ w=a_{1} \ldots a_{n} \in \Sigma^{*} $ with $ a_{i} \in \Sigma $ and $ 1 \leq k \leq n $ let $ w_{k}^{-}:=a_{1} \ldots a_{k-1} \overline{a_{k}} a_{k+1} \ldots a_{n} $, while $ \overline{a_{k}} $ is the unique character out of $ \Sigma \backslash\left\{a_{k}\right\} $. For every language $ L $ over $ \Sigma $ let gapping $ L^{-} $ be defined by $$L^{-}:= \left \{u \in \Sigma^{*} \mid u=w_{k}^{-}, k \in \mathbb{N} \text { und } w \in L \backslash\{\varepsilon\}\right\}$$ Show that the class of regular languages is closed under gapping. Meaning for a given finite automaton $ \mathcal{A} $ construct a new automaton that accepts $ (L(\mathcal{A}))^{-} $."
I don't understand how I could solve this problem without knowing a specific place in a word where one character is supposed to be left out and which character that is. I have thought about using $ε$- transitions, but that doesn't guarantee that a specific character has been left out. Also this might be a dumb question but in a word like $ w_{k}^{-}:=a_{1} \ldots a_{k-1} \overline{a_{k}} a_{k+1} \ldots a_{n} $ doesn't $a_{k+1}$ just become the new $a_{k}$ when that is left out?
Any help would be greatly appreciated! (Sorry if the wording is weird, the original language of the problem wasn't English.)
Problem in original language:
"Sei $ \Sigma=\{a, b\} . $ Für jedes Wort $ w=a_{1} \ldots a_{n} \in \Sigma^{*} $ mit $ a_{i} \in \Sigma $ und $ 1 \leq k \leq n $ sei $ w_{k}^{-}:=a_{1} \ldots a_{k-1} \overline{a_{k}} a_{k+1} \ldots a_{n} $, wobei $ \overline{a_{k}} $ das eindeutige Zeichen aus $ \Sigma \backslash\left\{a_{k}\right\} $ ist. Für jede Sprache $ L $ über $ \Sigma $ sei die Lückenbildung $ L^{-} $ definiert durch $$L^{-}:=\left\{u \in \Sigma^{*} \mid u=w_{k}^{-}, k \in \mathbb{N} \text { und } w \in L \backslash\{\varepsilon\}\right\}$$ Zeigen Sie, dass die Klasse der FA-erkennbaren Sprachen unter Lückenbildung abgeschlossen ist. D.h. konstruieren Sie für einen gegebenen endlichen Automaten $ \mathcal{A} $ einen neuen Automaten, der $ (L(\mathcal{A}))^{-} $ erkennt."
ansatz:
Let $ L $ be accepted by the $ N F A \quad A=\left(Q, \Sigma, \Delta, q_{0}, F\right) $ , $ L(A)=L . $
We define $ \varepsilon-N F A \quad A^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \Delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right) $ $$ \begin{aligned} Q^{\prime} &=Q \\ \Sigma^{\prime} &=\Sigma \backslash\left\{a_{k}\right\} \\ \Delta^{\prime} &=\left\{(q, \varepsilon, p) \mid\left(q, a_{k}, p\right) \in \Delta\right\} \end{aligned} $$ $$ \begin{aligned} F^{\prime}=F \end{aligned} $$ $$ \begin{aligned} L\left(A^{\prime}\right)=L^{-} \end{aligned} $$ Proof: $$ "\subseteq " $$ Let $ w=a_{1} \ldots a_{n} $ be a word over $L\left(A^{\prime}\right) $. Let $ \left(q_{0}, a_{1}, \ldots a_{k-1}, r_{k-1}, \varepsilon, r_{k}, a_{k+1}, \ldots, a_{n}, q_{n}\right) $ be an accepting run of $ w $. Then $ q_{n} \in F^{\prime} $ and $ \left(r_{i-1}, a_{i}, r_{i}\right) \in \Delta^{\prime} $ for every $ i \in[1, n] \backslash k \mid 1 \leqslant k \leqslant n $