This is Problem $26$ from chapter $8$ of "A Classical Introduction to Modern Number Theory" by Ireland-Rosen :
Let $p$ be a prime, $p \equiv 1 \pmod{4}$, $\chi$ a multiplicative character of order $4$ on $F_p$, and $\rho$ the Legendre symbol. Put $J(\chi,\rho)=a+ib$. Show
(a) $N(y^2+x^4=1)=p-1+2a$
(b) $N(y^2=1-x^4)=p+\sum{\rho(1-x^4)}$
(c) $2a \equiv -(-1)^m {2m \choose m} \pmod{p}$ where $m={p-1 \over 4}$
(d) Verify (c) for $p=13,17,19$.
I can solve (a),(b),(d) but I'm stuck with (c). Using (a),(b) we have $2a-1 \equiv \sum{\rho(x^4-1)} \equiv \sum{\rho(x^2+1)\rho(x^2-1)} \pmod{p}$ since $p \equiv 1 \pmod{4}$. I have no idea how to move forward. Please help me out.