We can take @epsilon-emperor's answer one step further. Making the substitution $x=\tan^2(u)$ in the integral they derived gives
\begin{align*}
\int_{0}^{1}\frac{x^{2j+1}}{1+x}dx &= \int_{0}^{\frac{\pi}{4}}\frac{\left(\tan^2 u\right)^{2j+1}}{1+\tan^2(u)}\cdot 2\tan(u)\sec^2(u)\text{ }du\\
&= 2\int_{0}^{\frac{\pi}{4}}\frac{\tan^{2(2j+1)+1}(u)}{\sec^2(u)}\cdot\sec^2(u)\text{ }du\\
&= 2\int_{0}^{\frac{\pi}{4}}\tan^{2(2j+1)+1}(u)\text{ }du
\end{align*}
Using the reduction formula for $\int\tan^n(x)dx$ together with mathematical induction, it can be shown that for every integer $n\geq 1$,
$$\int_{0}^{\frac{\pi}{4}}\tan^{2n+1}(x)\text{ }dx=(-1)^n\left(\frac{1}{2}\ln(2)-\frac{1}{2}\sum_{k=1}^{n}\frac{(-1)^{k-1}}{k}\right)$$
Thus, the exact sum of your series is
\begin{align*}
2\int_{0}^{\frac{\pi}{4}}\tan^{2(2j+1)+1}(u)\text{ }du &= 2\cdot(-1)^{2j+1}\left(\frac{1}{2}\ln(2)-\frac{1}{2}\sum_{k=1}^{2j+1}\frac{(-1)^{k-1}}{k}\right)\\
&= -\ln(2)+\sum_{k=1}^{2j+1}\frac{(-1)^{k-1}}{k}
\end{align*}