Let consider the following subset of $M_{2\times 2}(\mathbb{Z}_{5})$
$$A:= \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \: : \: a,b \in \mathbb{Z}_{5} \right\}.$$
(1) Prove that $A$ is subring of $M_{2\times 2}(\mathbb{Z}_{5})$.
(2) Prove that $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a zero divisor if and only if $a^{2}+b^{2}=0$, and compute all the zero divisors of $A$.
(3) Compute all the ideals of $A$.
I proved (1) straightforward, but the problem arives trying to prove (2). For this I take a matrix in $A$: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, such that $a^{2}+b^{2}=0$. The I want to show there is another matrix lets say $B=\begin{pmatrix} c & d \\ -d & c \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ so that
$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$
I tried to compute all the entries of this matrix product which are all equal to $0$ in $\mathbb{Z}_{5}$. But I dont know how to take the values of this matrix $B$. And not sure how to use the hypothesis $a^{2}+b^{2}=0$ for either two implications. And to compute all the zero divisors of $A$ I guess I should test all the six elements of $\mathbb{Z}_{5}$ satisfying $a^{2}+b^{2}=0$. And for (3) Im run out of ideas.
EDIT: For (2) I´ve just noticed the following pairs $(a,b)$ where $a,b \in \mathbb{Z}_{5}$ satisfy $a^{2}+b^{2}=0$: $(1,2),(2,1),(1,3), (3,1), (0,0), (2,4), (4,2)$. Let me know if there if this is correct? If correct, are there any other choices for $\mathbb{Z}_{5}$?