Let $BB(n)$ be the $n$-th Busy Beaver number, let $S(2)=BB(2)$ and for $n>2$ let $S(n)=1+S(n-1)+BB(n)$.
Then is this an uncomputable number?
$$\underset{i=2}{\overset{\infty}{\sum}}\frac{10^{BB(i)}-1}{9\cdot10^{S(i)}}=0.11110111111011111111111110...$$