The given limit is from an exercise from the book Differential and Integral Calculus by Piskunov:
$$\lim\limits_{x \to \infty}\dfrac{\ln{\left(1+e^x\right)}}{x}$$
The answer in the book is $1$ as $x \to +\infty$ but $0$ as $x \to -\infty$.
The given limit is from an exercise from the book Differential and Integral Calculus by Piskunov:
$$\lim\limits_{x \to \infty}\dfrac{\ln{\left(1+e^x\right)}}{x}$$
The answer in the book is $1$ as $x \to +\infty$ but $0$ as $x \to -\infty$.
The case $x\rightarrow-\infty$ is easy: $e^x\rightarrow0$, so $\ln(1+e^x)\rightarrow\ln(1+0)=0$ and $\frac{1}{x}\rightarrow0$
For $x\rightarrow+\infty$, notice that $$\ln (1+e^x)=\ln (1+e^x)+x-x=\ln (1+e^x)-\ln e^x+x=\ln\left(\frac{1+e^x}{e^x}\right)+x =\ln (e^{-x}+1)+x$$ Notice that $\ln (e^{-x}+1)\rightarrow0$, so $\cdots$, can you continue from here?
Well $x=\ln e^x$ so \begin{align} \lim\limits_{x \to \infty}\dfrac{\ln{\left(1+e^x\right)}}{x} &= \lim\limits_{x \to \infty}\dfrac{\ln{\left(1+e^x\right)}}{\ln e^{x}}\\ &= \lim\limits_{x \to \infty}\dfrac{\ln e^x{\left(1+e^{-x}\right)}}{\ln e^x}\\ & =\lim\limits_{x \to \infty}\left(\dfrac{\ln {\left(1+e^{-x}\right)}}{\ln e^x}+1\right)\\ &\ldots \end{align}
$z:=e^x$, and cosider $\lim z \rightarrow \infty.$
$\dfrac{\log (z(1+1/z))} {\log z} =$
$1+\dfrac{\log (1+1/z)}{\log z};$
Take the limit.
Used: $\log (ab) =\log a +\log b$.
$$ \begin{align*} \lim_{x\rightarrow +\infty} \frac{\ln \left( 1+e^x \right)}{x}&=\lim_{x\rightarrow +\infty} \frac{\ln \left[ e^x\left( 1+e^{-x} \right) \right]}{x} \\ &=1+\lim_{x\rightarrow +\infty} \frac{\ln \left( 1+e^{-x} \right)}{x} \\ &=1+\lim_{x\rightarrow +\infty} \frac{e^{-x}}{x} \\ &=1+\lim_{x\rightarrow +\infty} \frac{1}{xe^x} \\ &=1 \end{align*} $$
$$ \begin{align*} \lim_{x\rightarrow -\infty} \frac{\ln \left( 1+e^x \right)}{x}=\lim_{x\rightarrow -\infty} \frac{e^x}{x}=0 \end{align*} $$