I have a problem in my textbook:
Show that $\text{Cov}(\mu_X+X,\mu_Y+Y)=\text{Cov}(X,Y)$ for all deterministic $\mu_X,\mu_Y$ of the appropriate size.
My approach:
$$\text{Cov}(\mu_X+X,\mu_Y+Y)=\mathbb{E}\biggl[(\mu_X+X-\mathbb{E}[\mu_X+X])(\mu_Y+Y-\mathbb{E}[\mu_Y+Y])^T\biggr] = \mathbb{E}\biggl[(\mu_X+X-\mathbb{E}[X]- \mu_X)(\mu_Y+Y-\mathbb{E}[Y]-\mu_Y)^T\biggr]=\mathbb{E}\biggl[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])^T\biggr]=\text{Cov}(X,Y)$$
Would this approach be correct?