I want to check the ergodicity of irrational rotation map without using Fourier series. $T:\frac{\mathbb{R}}{\mathbb{Z}} \to \frac{\mathbb{R}}{\mathbb{Z}}$ which $ x \mapsto x+q$ , $\mod \ 1$ where $q \in \mathbb{Q}^c$.
Let $\mathcal{B}$ be the Borel-$\sigma$- algebra and $\mu(B) = \mu(a+B)$ , $B \in \mathcal{B}$ where $a+B=\{a+b | b \in B \}$
I wanna check the ergodicity by using the fact that for every $A,B$ in the Borel sigma algebra we have :
$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(T^{-i}A \cap B)=\mu(A)\cdot\mu(B)$
or
$\forall B$ in the Borel sigma algebra where $\mu(B) > 0$ : $\mu(\bigcup T^{-i}B)=1$
Any help ?
or
$\forall B$ in the Borel sigma algebra where $\mu(B) > 0$ : $\mu(\bigcup T^{-i}B)=1$
– Reza Yaghmaeian May 11 '21 at 08:03