Let $d$ be the inverse of $e \bmod \phi(N)$.
Therefore,
$de \equiv 1 \pmod{\phi(N)} $
$d \equiv e^{-1} \pmod{\phi(N)} $
In RSA encryption, we can decrypt messages because $P^{ed} \bmod N = P^{1} \bmod N$
I don't understand why $P^{ed} \bmod N = P^{1} \bmod N$ if $e$ and $d$ are modular inverses of $\phi(N)$. What property is this?