0

Let $d$ be the inverse of $e \bmod \phi(N)$.

Therefore,

$de \equiv 1 \pmod{\phi(N)} $

$d \equiv e^{-1} \pmod{\phi(N)} $

In RSA encryption, we can decrypt messages because $P^{ed} \bmod N = P^{1} \bmod N$

I don't understand why $P^{ed} \bmod N = P^{1} \bmod N$ if $e$ and $d$ are modular inverses of $\phi(N)$. What property is this?

Arturo Magidin
  • 398,050

0 Answers0