Be the sets: $$C:= \lbrace (x,y,0)\in\mathbb{R}^{3}: (x-1)^2+y^2=1\rbrace$$ $$C':= \lbrace (x,0,z)\in\mathbb{R}^{3}: (x+1)^2+z^2=1\rbrace $$ $$\overline{C}= \lbrace tx+(1-t)x': x\in C, x' \in C', t\in [0,1]\rbrace$$
Calculate the volume of $\overline{C}$. I drawed the sets $C$ and $C'$, but I can't see how is the set $\overline{C}$