Your original idea of looking at $x=\frac12+2n$ is in the right direction, because that gives $\sin(\pi x)=1$. The remaining piece is to seek $x\approx\left(\frac12+2m\right)\pi$ so that $\sin(x)\approx1$.
What We Would Like
If $|\,(4m+1)\pi-(4n+1)\,|\le2\epsilon$, then
$$
\begin{align}
1-\sin\left(2n+\tfrac12\right)
&=\left|\,\sin\left(\left(2m+\tfrac12\right)\pi\right)-\sin\left(2n+\tfrac12\right)\tag{1a}\,\right|\\[6pt]
&\le\left|\,\left(2m+\tfrac12\right)\pi-\left(2n+\tfrac12\right)\,\right|\tag{1b}\\[6pt]
&\le\epsilon\tag{1c}
\end{align}
$$
Explanation:
$\text{(1a)}$: $1-\sin(x)\ge0$ and $\sin\left(\left(2m+\tfrac12\right)\pi\right)=1$
$\text{(1b)}$: $|\sin(x)-\sin(y)|=2\left|\,\cos\left(\frac{x+y}2\right)\sin\left(\frac{x-y}2\right)\,\right|\le|x-y|$
$\text{(1c)}$: assumption about $m$ and $n$
Since $\sin\left(\left(2n+\tfrac12\right)\pi\right)=1$, we have
$$
\overbrace{\sin\left(2n+\tfrac12\right)}^{\ge1-\epsilon}+\overbrace{\sin\left(\left(2n+\tfrac12\right)\pi\right)}^{=1}\ge2-\epsilon\tag2
$$
Thus, given an $\epsilon\gt0$, we would like to find $m,n\in\mathbb{Z}$ so that $|\,(4m+1)\pi-(4n+1)\,|\le2\epsilon$.
Results from Continued Fraction Approximations
Suppose that $\frac{p_{n-1}}{q_{n-1}}$ and $\frac{p_n}{q_n}$ are two consecutive continued fraction convergents for $\pi$. Then
$$
\begin{align}
\left|\,\frac{p_{n-1}}{q_{n-1}}-\pi\,\right|+\left|\,\pi-\frac{p_n}{q_n}\,\right|
&=\left|\,\frac{p_{n-1}}{q_{n-1}}-\frac{p_n}{q_n}\,\right|\tag{3a}\\
&=\frac1{q_{n-1}q_n}\tag{3b}
\end{align}
$$
Explanation:
$\text{(3a)}$: $\pi$ is between any two consecutive convergents
$\text{(3b)}$: a property of continued fraction convergents: $p_{n-1}q_n-p_nq_{n-1}=(-1)^{n-1}$
For any $a,b\ge0$, since $p_{n-1}-q_{n-1}\pi$ and $p_n-q_n\pi$ have different signs, $(3)$ implies
$$
\begin{align}
|(ap_{n-1}+bp_n)-(aq_{n-1}+bq_n)\pi|
&=|a(p_{n-1}-q_{n-1}\pi)+b(p_n-q_n\pi)|\tag{4a}\\[3pt]
&\le\frac{\max(a,b)}{q_n}\tag{4b}
\end{align}
$$
Consider the matrix whose columns are consecutive convergents of $\pi$. By $(3)$, the determinant is $\pm1$.
Suppose
$$
\begin{align}
\begin{bmatrix}p_{n-1}&p_n\\q_{n-1}&q_n\end{bmatrix}^{-1}\begin{bmatrix}1\\1\end{bmatrix}
&=(-1)^{n-1}\begin{bmatrix}q_n&-p_n\\-q_{n-1}&p_{n-1}\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}\tag{5a}\\[3pt]
&=\begin{bmatrix}(-1)^n(p_n-q_n)\\(-1)^{n-1}(p_{n-1}-q_{n-1})\end{bmatrix}\tag{5b}\\[3pt]
&\equiv\begin{bmatrix}a\\b\end{bmatrix}\pmod4\tag{5c}
\end{align}
$$
where $0\le a,b\lt4$. Then
$$
\begin{bmatrix}p_{n-1}&p_n\\q_{n-1}&q_n\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}\equiv\begin{bmatrix}1\\1\end{bmatrix}\pmod4\tag6
$$
Thus, we have from $(5)$
$$
ap_{n-1}+bp_n\equiv aq_{n-1}+bq_n\equiv1\pmod4\tag7
$$
and from $(4)$
$$
|(ap_{n-1}+bp_n)-(aq_{n-1}+bq_n)\pi|\le\frac{\max(a,b)}{q_n}\tag8
$$
Convergents and Examples
Here are some examples of generating $n$ and $m$ that satisfy $(1)$ for arbitrarily small $\epsilon\gt0$.
The convergents for $\pi$ start out
$$
\frac31,\frac{22}7,\frac{333}{106},\frac{355}{113},\frac{103993}{33102},\frac{104348}{33215},\dots
$$
Example $\bf{1}$
Using the first two convergents as columns:
$$
\begin{bmatrix}3&22\\1&7\end{bmatrix}^{-1}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}15\\-2\end{bmatrix}\equiv\begin{bmatrix}3\\2\end{bmatrix}\pmod4
$$
and
$$
\begin{bmatrix}3&22\\1&7\end{bmatrix}\begin{bmatrix}3\\2\end{bmatrix}=\begin{bmatrix}53\\17\end{bmatrix}\equiv\begin{bmatrix}1\\1\end{bmatrix}\pmod4
$$
and
$$
|53-17\pi|=0.407075
$$
which is less than $\frac37$ as given in $(4)$.
$$
\bbox[5px,border:2px solid #C0A000]{\sin\left(\frac{53}2\right)+\sin\left(\frac{53}2\pi\right)=1.9793576431}
$$
Example $\bf{2}$
Using the third and fourth convergents as columns:
$$
\begin{bmatrix}333&355\\106&113\end{bmatrix}^{-1}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}242\\-7\end{bmatrix}\equiv\begin{bmatrix}2\\1\end{bmatrix}\pmod4
$$
and
$$
\begin{bmatrix}333&355\\106&113\end{bmatrix}\begin{bmatrix}2\\1\end{bmatrix}=\begin{bmatrix}1021\\325\end{bmatrix}\equiv\begin{bmatrix}1\\1\end{bmatrix}\pmod4
$$
and
$$
|1021-325\pi|=0.0176124
$$
which is less than $\frac2{113}$ as given in $(4)$.
$$
\bbox[5px,border:2px solid #C0A000]{\sin\left(\frac{1021}2\right)+\sin\left(\frac{1021}2\pi\right)=1.9999612255979}
$$
Example $\bf{3}$
Using the fourth and fifth convergents as columns:
$$
\begin{bmatrix}355&103993\\113&33102\end{bmatrix}^{-1}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}-70891\\242\end{bmatrix}\equiv\begin{bmatrix}1\\2\end{bmatrix}\pmod4
$$
and
$$
\begin{bmatrix}355&103993\\113&33102\end{bmatrix}\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}208341\\66317\end{bmatrix}\equiv\begin{bmatrix}1\\1\end{bmatrix}\pmod4
$$
and
$$
|208341-66317\pi|=0.000008114318
$$
which is less than $\frac2{33102}$ as given in $(4)$.
$$
\bbox[5px,border:2px solid #C0A000]{\sin\left(\frac{208341}2\right)+\sin\left(\frac{208341}2\pi\right)=1.99999999999176973}
$$