I know how to evaluate the Continued Fraction $1+\cfrac{1}{2+\cfrac{1}{3+\cfrac{1}{4+\ddots}}}$ and its dual version: $1+\cfrac{1}{1+\cfrac{2}{1+\cfrac{3}{1+\cfrac{4}{1+\ddots}}}}$
I also understand $\cfrac{1}{1}+\cfrac{1}{\cfrac{1}{2}+\cfrac{1}{\cfrac{1}{3}+\cfrac{1}{\cfrac{1}{4}+\ddots}}}=e-1 \,\,\, $ and $\,\,\, 1+\cfrac{\cfrac{1}{1}}{1+\cfrac{\cfrac{1}{2}}{1+\cfrac{\cfrac{1}{3}}{1+\cfrac{\cfrac{1}{3}}{1+\cfrac{\frac{1}{4}}\ddots}}}}=\cfrac{2}{\pi-2}$
I know that $1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\ddots}}}$ equals $\cfrac{e^2+1}{e^2-1}\,\,\,$
But how to evaluate $1+\cfrac{1}{1+\cfrac{3}{1+\cfrac{5}{1+\ddots}}}$ ?
Euler's Diffential method leads me nowhere. Even more impossible (to me) is the next one. I know that $1/\ln(2) =1+\cfrac{1^2}{1+\cfrac{2^2}{1+\cfrac{3^2}{1+\ddots}}}$
But how to analyze its 'mirrored' version:$1^2+\cfrac{1}{2^2+\cfrac{1}{3^2+\cfrac{1}{4^2+\ddots}}}$?