Prove $$\sum_{j=0}^{n}\binom{n}{j}j^{n-2}(-1)^{n-j+1} = 0$$
My wrong proof try is this:
$\sum_{j=0}^{n}\binom{n}{j}j^{n-2}(-1)^{n-j+1} = \sum_{j=0}^{n}\binom{n}{j}1^jj^{n-2}(-1)^{n-j}(-1) =-\sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}j^{n-2}$
We know:
$(\forall x,y \in R)(\forall n \in N) (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$
Therefore:
$\sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j} = (1-1)^n = 0$
And
$\sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}j^{n-2} \leq \sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}n^{n-2} \\ = n^{n-2}\sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j} \\ = 0$
And
$ \sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}j^{n-2} = \sum_{j=1}^{n}\binom{n}{j}1^j(-1)^{n-j}j^{n-2} \\ \geq \sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}1^{n-2} \\ = 1\sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j} \\ = 0$
Therefore
$0 \leq \sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}j^{n-2} \leq 0 \Rightarrow \\ \sum_{j=0}^{n}\binom{n}{j}1^j(-1)^{n-j}j^{n-2} = 0$
And
$\sum_{j=0}^{n}\binom{n}{j}j^{n-2}(-1)^{n-j+1} = 0$
I later realised that the comparison cant be made due to the $(-1)^n$
I have also tried by testing for n even and odd numbers. I can prove it for odd numbers but not for even.
Do you have any other ideas?