Find all entire functions such that:
$$\lvert f'(z)\rvert^2 + \lvert f(z)\rvert^2 < 81(\lvert z \rvert^2 + 1), \enspace z \in \mathbb{C},$$
and $f(0)=0$.
I'm struggling with this type of question, I know that I have to bound $\lvert f \rvert$ and then apply Liouville theorem, to find a constant and finally apply the condition $f(0)=0$.
My attempt so far:
$$\lvert f(z) \rvert^2 < 81(\lvert z \rvert^2 + 1)$$ $$ \frac{\lvert f(z) \rvert^2 }{\lvert z \rvert^2 + 1} < 81$$ $$ \frac{\lvert f(z) \rvert^2 }{\lvert z \rvert^2 + 1 + 2 \lvert z \rvert} < 81$$ $$ \frac{\lvert f(z) \rvert^2 }{(\lvert z \rvert + 1)^2} < 81$$ $$ \frac{\lvert f(z) \rvert }{(\lvert z \rvert + 1)} < 9$$
However, I don't know how to go any further. I'd like to say that:
$$ \frac{\lvert f(z) \rvert}{\lvert z +1 \rvert} < 9$$
but it's wrong by the triangle inequality. Is my thinking process correct?