Let be $ A,B\in \mathbb{K}^{n\times n} $ diagonalizable with $ A\cdot B=B\cdot A $. What can you say about the eigenvalues of the matrix $ A+B $?
My conjecture is: If $ \lambda $ is an eigenvalue of $ A $ and $ \mu $ is an eigenvalue of $ B $ than $ \lambda+\mu $ is an eigenvalue of $ A+B $.
My idea:
At first I have an eigenvalue $ \lambda\in \mathbb{K} $ of $ A $ with eigenvector $ v\in \mathbb{K}^n $. Than $ A\cdot B\cdot v=B\cdot A\cdot v=B\cdot \lambda\cdot v=\lambda\cdot B\cdot v $.
I want to try to show that $ A $ and $ B $ have the same eigenvectors. But from here I get stuck. If $ A $ and $ B $ have the same eigenvectors than both have the same eigenspaces or eigenspaces have the same dimension. I have no information about the eigenspaces.