I'm trying to prove the vector triple product expansion by magnitude and direction: $$ \vec{a} \times(\vec{b}\times \vec{c})=(\vec a\cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} $$ The equality of direction is easy: using the property of the cross product that $\vec{b} \times \vec{c} $ is orthogonal to both $ \vec{b} $ and $\vec{c} $. But I can't give a correct proof for the latter. Where is my error? My trying is following:
Let $ \theta $ be the angle between $ \vec{a} $ and the plane containing $ \vec{b} $ and $ \vec{c} $, $ \varphi $ be the angle between $ \vec{b} $ and $ \vec{c} $ in the plane containing them.
The left hand:
$$ \begin{align} \Vert \vec{a} \times(\vec{b}\times \vec{c}) \Vert &= \Vert \vec{a} \Vert \Vert \vec{b}\times \vec{c} \Vert \vert\sin \theta \vert \\&= \Vert \vec{a} \Vert \Vert \vec{b} \Vert \Vert \vec{c} \Vert \vert\sin \theta \vert \vert\sin\varphi \vert \end{align} $$
The right hand:
$$ \begin{align} \Vert(\vec a\cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}\Vert ^2 & = \Vert(\vec a\cdot \vec{c})\vec{b}\Vert^2 -2 (\vec a\cdot \vec{c})(\vec{a} \cdot \vec{b})(\vec{b}\cdot\vec{c})+ \Vert(\vec{a} \cdot \vec{b})\vec{c}\Vert ^2 \\&= 2\Vert \vec{a} \Vert ^2 \Vert \vec{b} \Vert ^2 \Vert \vec{c} \Vert ^2 \cos^2 (\frac{\pi}{2} - \theta) - 2\Vert \vec{a} \Vert ^2 \Vert \vec{b} \Vert ^2 \Vert \vec{c} \Vert ^2 \cos^2 (\frac{\pi}{2} - \theta)\cos\varphi \\ &= 2\Vert \vec{a} \Vert ^2 \Vert \vec{b} \Vert ^2 \Vert \vec{c} \Vert ^2 \vert\sin^2 \theta \vert (1-\cos\varphi ) \end{align} $$ figure
The right hand
You seem to assume the angles between $\vec a, \vec c$ and $\vec a, \vec b$ are both $\pi/2 - \theta$. They are not. – dxiv May 08 '21 at 02:06