Let $F$ denote the set of all functions $f : \mathbb{R} \to \mathbb{R}$, and let $C \subset F$ denote the subset of all continuous functions. Prove that $|\mathbb{R}|=|C| < |F|$. Hint: use the fact that a continuous function on $\mathbb{R}$ is determined by its values on the rational numbers $\mathbb{Q} \subset \mathbb{R}$.
Here is my attempt. There are several preliminary lemmas, such as $|\mathbb{R}| = |\mathbb{R}^{\mathbb{N}}|$, that I am still trying to work out the details for, but I want to just be sure that the general sketch of the proof is correct.
We use the Schroder-Bernstein theorem. Given $r \in \mathbb{R}$, the map sending $r \longmapsto f(x) = r$ is an injection $\mathbb{R} \hookrightarrow C$, so we have $|\mathbb{R}| \leq |C|$. Given $f \in C$, $f$ is uniquely determined by its values on rational inputs. In particular, the mapping $f \longmapsto f\mid_{\mathbb{Q}}$ embeds $C$ into $\mathbb{R}^{\mathbb{Q}}$. Since $\mathbb{Q} \cong \mathbb{N}$, we have $\mathbb{R}^{\mathbb{Q}} \cong \mathbb{R}^{\mathbb{N}}$, and we know $\mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$. So we have $$|C| \leq |\mathbb{R}^{\mathbb{Q}}| = |\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}|,$$ so, composing maps, we get an injection $C \hookrightarrow \mathbb{R}$, so by Schroder-Bernstein, $|R| = |C|$. Now, it suffices to show that $|F| > |\mathbb{R}|$. By Cantor's theorem, we have $|\mathbb{R}| < |\mathcal{P}(\mathbb{R})|$. Furthermore, we know $\mathcal{P}(\mathbb{R}) \cong 2^{\mathbb{R}}$, where $2^{\mathbb{R}}$ is the set of functions $\mathbb{R} \to \{0,1\}$. But given such an $f: \mathbb{R} \to \{0,1\}$, since $\{0,1\} \subset \mathbb{R}$, we can identify $f$ with $f': \mathbb{R} \to \mathbb{R}$ where $f'(x) = f$ for all $x \in \mathbb{N}$. So we have $$ |C| = |\mathbb{R}| < |\mathcal{P}(\mathbb{R})| = |2^{\mathbb{R}}| \leq |\mathbb{R}^{\mathbb{R}}| = |F|, $$ so we conclude $$ |C| = |\mathbb{R}| < |F|. $$
How does this sketch look?