consider the Banach space $\ell^1$, and let $e_i$ be the sequence $(0,\dots,1,0\dots)$, with $1$ in the $i$-th position. show that $\{e_i\}$ converges weakly to $0$ in $\ell^1$ but not strongly.
My attempt : I found the answer here but i don't understand the answer
A sequence $(x_n)$ in a normed space $X$ is said to be weakly convergent if there is an $x \in X$ such that $$\lim_{n \to \infty}f(x_n)=f(x)$$ where $ f \in X'$( dual space of $X$)
Take $e^{(n)}\in\ell_1$ given by $e^{(n)}_i:=\begin{cases}1&\mbox{ if }n=i;\\\ 0&\mbox{otherwise.} \end{cases}$ Then $d\left(e^{(m)},e^{(n)}\right)=2$ if $m\neq n$
This implies sequence $\{e_i\}$ has no convergent subsequence
Thus $\{e_i\}$ is not strongly convergent
$l^1$ has infinitely linearly independent set, so we can write $x=a_1e_1+ a_2e_2+.....$
now $f : \ell^1 \to \mathbb{F}$ define by $$f(x) = f(a_1e_1+a_2e_2 +...)= af(e_1)+a_2f(a_2).....=\sum_{i=1}^{\infty}a_if(e_i)$$
since $\ell^{\infty}$ is the dual space of $\ell^1 $ so $f(x) \in \ell^{\infty}$
My confusion is that how to show $\lim_{n \to \infty}f(x_n)=f(x)?$