Another approach: define
$$f(x):=\log(1-x)+x\;,\;x<1\implies f'(x)=-\frac1{1-x}+1=0\iff x=0\;,\;\;\text{and since}$$
$$f''(x)=-\frac1{(1-x)^2}<0\;\;\;\forall\,x<1\implies \,(0,0)\;\;\text{is a maximal point of}\;\; f(x)\implies\,$$
$$\forall\,x<1\;,\;\;f(x)<f(0)=0\;\;\;\;\;\color{red}{(*)}$$
Now define
$$H_n:=\sum_{k=1}^n\frac1n\;,\;\;\text{and observe that}\;\;H_{n+1}-H_n=\frac1{n+1}\;,\;\;\text{so if we define}$$
$$a_n:=H_n-\log n\implies a_{n+1}-a_n=\frac1{n+1}-\log(n+1)+\log n=\log\left(1-\frac1{n+1}\right)+\frac1{n+1}$$
and from $\;\color{red}{(*)}\;$ above we get that $\,a_{n+1}<a_n\;$ , so the sequence $\,\{a_n\}\,$ is monotone descending.
OTOH, taking the upper Riemann sum for the function $\,\displaystyle{f(x):=\frac1x}\,$ of the partition $\,\{x_1=1\,,\,x_2=2\,,\ldots\,,x_n=n\}\,$ of the interval $\,[1,n]\,$ (i.e., choosing the left extreme points of every subinterval as the function $\;f\;$ is monotone descending), we get
$$\log n=\int\limits_1^n\frac{dx}x\le\sum_{k=1}^{n-1}\frac1{x_k}(x_{k+1}-x_k)=\sum_{k=1}^{n-1}\frac1k=1+\frac12+\ldots+\frac1{n-1}=H_n-\frac1n$$
so with the first part above we get
$$a_n=H_n-\log n\ge\frac1n$$
and we thus get the sequence $\,\{a_n\}\,$ is monotone descending and bounded from below and thus its limit exists, which we call "The Euler-Mascheroni Constant" and denote it by $\,\gamma\,$ ...
Note: The part after "OTOH" can be made pretty easy and compelling with a diagram showing the function $\,f\,$ and the "upper" rectangles for the corresponding integral.