$\displaystyle\int_{0}^{\infty}\dfrac{\cos x}{\ln x}\mathrm{dx}$ determine the convergence or divergence of the integral.
So I tried to distinguish the interval of the integral:
$$\displaystyle\int_{0}^{1}\dfrac{\cos x}{\ln x}\mathrm{dx}+\displaystyle\int_{1}^{\infty}\dfrac{\cos x}{\ln x}\mathrm{dx}$$
And the first integral is proper since $\displaystyle\lim_{x \to 0^{+}} \dfrac{\cos x}{\ln x}=0$. But the other ones I can't evaluate those. Thanks!