Find $$I_n(a)=\displaystyle \int \limits_0^1 \dfrac{dx}{(x^2+a^2)^n}, \, a\ne0, \, 0\ne n \in \mathbb{N}.$$
I have following ideas. We have $I_n(a)=I_n(-a)$. \begin{align} \forall \,0\ne n \in \mathbb{N},&\, f(x,a)=\dfrac{1}{(x^2+a^2)^n}\, \text{is continuous on}\, D=[0,1]\times(0; \infty)\\ &f^{'}_a(x,a)=\dfrac{-2na}{(x^2+a^2)^{n+1}}\, \text{is continuous on}\, D. \end{align}
So, $$I^{'}_n(a)=\displaystyle \int \limits_0^1 \dfrac{-2nadx}{(x^2+a^2)^{n+1}}=-2naI_{n+1}(a)$$
I just think here.