a while ago I was trying to prove this:
Show that $C_4 \times C_4$ is not isomorphic to $C_4 \times C_2 \times C_2$.
I know that we can write $C_4 \times C_2 \times C_2$ as $C_4 \times V_4$, where $V_4$ is the $4$-Klein group, but I can't conclude the proof, because they are both abelian. But, is easy to show that $C_4$ is not isomorphic to $C_2 \times C_2$ ($C_4$ has an element of order $4$ and $C_2 \times C_2$ hasn't). Is it enough? I mean, is true that $A \ncong B \implies C \times A \ncong C \times B$?
Any help would be very appreciated! Thanks in advance!