So the series $$\frac{\pi}{2}-\frac{\pi^{3}}{8 \cdot 3!} + \frac{\pi^{5}}{32 \cdot 5!} - \cdot\cdot\cdot$$ is convergent, I need to find the value where it converges to
So far I have determined the pattern should be an alternating series $$\sum_{n=1}^{\infty} (-1)^{n+1} \, \frac{\pi^{2n-1}}{2^{2n-1} \cdot (2n-1)!}$$
But I need some help finding the value of convergence