Question
Let $X_1, \ldots, X_n$ be independent and identically distributed continuous random variables with a positive continuous joint density function $f(x_1, \dots, x_n)$ satisfying the relation $$f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)\quad \mathrm{whenever}\quad \lvert x_1 \rvert + \ldots + \lvert x_n \rvert = \lvert y_1 \rvert + \ldots + \lvert y_n \rvert.$$ What are all possible distributions of $X_1$?
My working
If $\lvert x_1 \rvert = -x_1$, then all possible distributions of $X_1$ have density of the form $$f_{X_1}(x_1) = \frac {e^{-cx_1}} {\int^{\infty}_{-\infty} e^{-cx}\ \mathrm{d}x}\ \forall\ c \in \mathbb{R}^-.$$
If $\lvert x_1 \rvert = x_1$, then all possible distributions of $X_1$ have density of the form $$f_{X_1}(x_1) = \frac {e^{-cx_1}} {\int^{\infty}_{-\infty} e^{-cx}\ \mathrm{d}x}\ \forall\ c \in \mathbb{R}^+.$$
Thus, combining both cases, all possible distributions of $X_1$ have density of the form $$f_{X_1}(x_1) = \frac {e^{-\lvert cx_1 \rvert}} {\int^{\infty}_{-\infty} e^{-\lvert cx \rvert}\ \mathrm{d}x}\ \forall\ c \in \mathbb{R}.$$
Is my answer correct? I am very new to radially symmetric distributions, so if I have gone wrong anywhere, any intuitive explanations will be greatly appreciated :)