Let:
- $k > 0$ be an integer
- $p_k, p_{k-1}, \dots, p_2, p_1$ be $k$ integers such that: $$p_k > p_{k-1} > \dots > p_2 > p_1 > 0$$
- $\nu_2(x)$ be the 2-adic valuation of $x$
- $x_1, x_2, \dots, x_n$ be the next $n$ odd integers in a sequence such that:
- $x_{i+1} = \dfrac{3x_i+1}{2^{\nu_2(3x_i+1)}}$
- $x_1 > 1$ can be any odd integer
- $x_{max}$ be the largest of the $n$ integers
- $x_{min}$ be the smallest of the $n$ integers
- $x_1, x_2, \dots, x_k$ be called a cycle of length $k$ if: $$x_1 = x_{1+k}$$
Observation:
- For any $k$ odd integers in the sequence above there exists $p_1, p_2, \dots, p_k$ such that: $$2^{p_k}x_{k+1} = 3^kx_1 + 3^{k-1} + \sum\limits_{s=1}^{k-1}3^{k-1-s}2^{p_s}$$
Note: Details for this can be found in step 2 here
Question:
Does it now follow that there exists an integer $k > t> 0$ such that:
$$x_{max} < \frac{2^{p_t}}{3^t}x_{min}$$
Here's my thinking:
(1) Assume that $x_1, x_2, \dots x_k$ form a cycle of length $k$ so that $x_1 = x_{1+k}$
(2) From the observation, there exists an integer $0 < t < k$ with $3^{t-1} > 0$ and $S \ge 0$ such that:
$$2^{p_t}x_{min} = 3^tx_{max} + 3^{t-1} + S$$
where $S=\begin{cases} 0, && \text{if }t=1\\ \sum\limits_{s=1}^{t-1}3^{t-1-s}2^{p_s}, && \text{if }t>1\\ \end{cases}$
(3) $2^{p_t}x_{min} > 3^{t}x_{max}$ so that:
$$x_{max} < \frac{2^{p_t}}{3^{t}}x_{min}$$
Edit 1: Updating some mistakes in the question. Thanks to John Omielan for his answer!
\text{min}
and\text{max}
with those subscripts, so you get $x_{\text{min}}$ and $x_{\text{max}}$ instead of $x_{min}$ and $x_{max}$. – John Omielan Apr 28 '21 at 03:09