You can find out pdf of Z here: Pdf of the difference of two exponentially distributed random variables
Note that mean $\theta$ means parameter is $1/\theta = \lambda$. Replacing variables with $\lambda$, we get $f_Z(z) = \frac{\lambda}{2}e^{-\lambda |z|}$.
So mgf of Z is $$M_Z(t) = E[e^{tZ}] = \int_{-\infty}^{\infty} e^{tz}\frac{\lambda}{2}e^{-\lambda |z|} \,dz = \frac{\lambda}{2 (t - \lambda)}e^{z(t - \lambda)} \Big|_{0}^\infty + \frac{\lambda}{2 (t + \lambda)}e^{z(t + \lambda)} \Big|_{-\infty}^0$$
For $t < \lambda$ ($\lambda > 0$ and we need result at $t=0$), $\lim_{z\to\infty} e^{z(t - \lambda)} = 0$ and $\lim_{z\to{-\infty}} e^{z(t + \lambda)} = 0$. Therefore, $M_Z(t) = E[e^{tZ}] = \frac{\lambda}{2}(-\frac{1}{t-\lambda} + \frac{1}{t+\lambda})$. Then take derivative w.r.t $t$ for four times and evaluate at $t=0$
$$E[Z^4] = M_Z^{(4)}(0) = \frac{\lambda}{2}(\frac{-24}{-\lambda^5} + \frac{24}{\lambda^5}) = 24\lambda^{-4} = 24\theta^{4}$$
You can also generalize from here: $$E[Z^n] = M_Z^{(n)}(0) = n!\lambda^{-n} = n!\theta^{n}$$