Let $A, B$ be symmetric matrics. Define $$ N(A):=\sum_{\lambda (A)<0}\lambda (A) ,\qquad P(A):=\sum_{\lambda (A)>0} \lambda (A) $$, where $A$ is a real symmetric matrix, $\lambda(A)$ represents its eigenvalue and eigenvalues whose algebric multiplicity is $k$ are sumed $k$ times.
Question: How to prove the following inquality?
$$ N(A)+N(B)\le N(A+B)\le P(A)+N(B)\le P(A+B)\le P(A)+P(B) $$ My effort:When $A,B$ are diagonal matrics, we can use the following equality easily get a proof. $$ \begin{pmatrix} \lambda_1& & & & \\ & \lambda_2& &\\ & & \ddots& &\\ & & & \lambda_n&\\ \end{pmatrix}+\begin{pmatrix} \mu_1& & & & \\ & \mu_2& &\\ & & \ddots& &\\ & & & \mu_n&\\ \end{pmatrix}=\begin{pmatrix} \lambda_1+\mu_1& & & & \\ & \lambda_2+\mu_2& &\\ & & \ddots& &\\ & & & \lambda_n+\mu_n&\\ \end{pmatrix} $$ where $\lambda_i,\mu_i$ respectively deontes $A,B$'s eigenvalues. Hence, when $AB=BA$, above inequlities also true. Because $A,B$ can be expressed by $P^{T} \Lambda_1 P,P^{T}\Lambda_2 P$, where $\Lambda_1,\Lambda_2$ are digonal matrics and $P$ is a orthogonal matrix, namely $PP^{T}=I$.
Question: How to prove these inequlities when $AB\ne BA$?