The question
Let $(X,\mathcal{A},\mu)$ be a measure space. Let $A_n$ be a sequence of sets in $\mathcal{A}$.
Define $A := \{ x \in X $ such that for all but finitely many $n \in \mathbb{N}$ it holds that $x ∈ A_n$ $ \}$
Show that $\lim_{n\to\infty}\inf \mu (A_n) \geq \mu(A)$
My attempt
$ \mu (A_n) = \int_X \chi_{A_n} d\mu$ and so by Fatou's lemma:
$\lim_{n\to\infty}\inf \mu (A_n) = \lim_{n\to\infty}\inf \int_X \chi_{ A_n} \geq \int_X \lim_{n\to\infty}\inf \chi_{A_n} d\mu$
Now all I need to show is that $\lim_{n\to\infty}\inf \chi_{A_n}(x) = \chi_A(x)$ a.e
Consider $x\in A$ then eventually $x\in A_n \forall n $ eventually and so $\chi_{A_n}(x) = 1 \forall n $ and so $\lim_{n\to\infty}\inf \chi_{A_n}(x) = \lim_{n\to\infty} 1 = 1= \chi_A(x)$
Now consider $x\not\in A$ then $\forall N \in \mathbb{N} \exists n >N$ such that $x \not\in A_n$ and so $\inf_{m \geq n} \chi_{A_n}(x) = 0 \forall n$ and hence $\lim_{n\to\infty}\inf \chi_{A_n}(x) = \lim_{n\to\infty} 0 = 0= \chi_A(x)$
Ando so the required follows.
However this feels awfully complicated and I was wondering if anyone has any tips for something simpler